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Abstract – We consider in this work the different possible stationary flows of a one-dimensional
quantum fluid in the mean-field regime. We focus on the supersonic regime where a transition
from a time-dependent flow to a stationary diffractive flow occurs at a given critical velocity. We
give nonperturbative results for this critical velocity in the presence of a localised obstacle of
arbitrary size and strength. In addition, we discuss the existence of superfluid-like solution in the
supersonic regime due to resonant transport and provide a complete map of the different regimes
of stationary transport of a quantum fluid.
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Introduction. – One important property of superflu-
ids is their ability to move without dissipation below a
certain critical velocity vc [1]. A phase transition occurs
at vc and the superfluid behaves as a normal dissipative
fluid for velocities larger than vc. First observed in liq-
uid helium [2,3], superfluidity was later shown to be more
generic and was observed in various quantum fluids [4–7].
Soon after its discovery, the critical velocity was theorised
by Landau [8,9] who proposed a very elegant and gen-
eral criterion which states that vc = minp ε(p)/p, where
ε(p) is the spectrum of elementary excitations with mo-
mentum p. However, this prediction usually overestimates
the actual critical velocity and was verified experimentally
only under very specific configurations as, for instance,
by moving a single ion in liquid helium [10]. The reason
is that Landau’s argument is perturbative and therefore
does not take properly into account the nonlinear nature
of the problem of interaction between quantum fluids and
external potentials. Important progresses arose with the
introduction of a simpler model to describe the flow of a
quantum fluid: The nonlinear Schrödinger (NLS) equation
or Gross-Pitaevskii (GP) equation [11–13]. In particular,
nonperturbative results were derived for the first time by
Frisch and collaborators in two dimensions in the pres-
ence of an impenetrable cylinder [14] followed by a series
of works for various obstacles (see ref. [15] for a review).
Although this model is not satisfactory for the description
of dense systems such as liquid helium, it is very accurate
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for weakly interacting superfluids such as Bose-Einstein
condensates [16] or quantum fluids of light [17].

However, the transport properties of quantum fluids de-
scribed by a NLS equation are not restricted to superflu-
idity and display a rich phenomenology [18–21] which is
summarised in fig. 1, for a one-dimensional system. In the
presence of a localised obstacle, three different regimes
of transport exist depending on its strength and relative
velocity with the fluid. Below the actual superfluid crit-
ical velocity vc, the flow is stationary and only locally
perturbed in the vicinity of the obstacle, as illustrated in
panel (a) of fig. 1. Above this threshold, which strongly
depends on the obstacle, the flow can no longer be sta-
tionary due to the continuous emission of linear and non-
linear excitations (fig. 1(b)) which leads to a slowdown
of the superfluid motion and possibly to wave and quan-
tum turbulence [22,23]. At larger velocities, a second
critical velocity, often referred to as the supersonic sep-
aratrix [18,24,25], separates the latter regime from an-
other regime of stationary transport. We will denote this
second critical velocity vs. The high-velocity stationary
regime observed for velocities larger than vs is reminis-
cent of the linear Schrödinger equation since the kinetic
energy becomes much larger than the interaction energy
in the fluid. In that case, the flow is partly backscattered
by the obstacle and generally experiences friction. The
incoming and reflected flows interfere and create a stand-
ing wave with a density modulation ahead of the obstacle
(fig. 1(c)). Yet some configurations exist in which dissi-
pation does not occur, even in the nonsuperfluid phase,
due to resonant transport [26–28]. For specific obstacle
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Fig. 1: Typical phase diagram of the possible stationary flows
in the presence of a localised obstacle, hereby a square poten-
tial, as a function of the fluid velocity v∞ and the strength
of the obstacle U0. The different regimes range from a super-
fluid (light blue) to a normal stationary regime (dark blue),
the white phase in between corresponds to the nonstationary
nonsuperfluid regime. The dotted curve corresponds to a reso-
nant state where the supersonic solution mimics the superfluid
ones. Generic space-dependent density profiles n(x) are given
in panels (a), (b), (c) and (d), for the corresponding points
in the phase diagram. This phase diagram was obtained for a
cubic nonlinearity g(n) = n and a square potential of width
σ = 1 and amplitude U0. The units are detailed in the text.

parameters there might exist curves in the supersonic sta-
tionary phase where backscattering is suppressed and the
fluid experiences no drag at all mimicking a superfluid so-
lution (fig. 1(d)), a behaviour normally present below the
superfluid critical velocity vc, in the subsonic regime [29].

The aim of this letter is to determine, in a nonpertur-
bative way, the supersonic separatrix —i.e., the border
between the nonstationary and the stationary nonsuper-
fluid regimes— for a generic quantum fluid flowing past a
simplified localised obstacle in the one-dimensional mean-
field regime. In addition, we study in detail the condi-
tions to obtain superfluid-like solutions in the supersonic
regime. Combined with previous results for the superfluid
critical velocity [15], this work provides a complete map
of the different possible regimes of stationary transport
for a one-dimensional quantum fluid, above and below the
sound velocity, for repulsive or attractive obstacles, and
for different types of nonlinearities.

This paper is divided as follows: The model of the quan-
tum fluid, based on a generalisation of the 1D nonlinear
Schrödinger equation to any local self-interaction poten-
tial increasing with the fluid density, is first detailed.
This general approach makes it possible to describe many
superfluid systems ranging from ultracold atomic Bose
and Fermi gases [16] to exciton-polariton condensates in
semiconductor optical microcavities [6,17] and fluids of

light [7,21,30–34]. A thorough analytical study is then
performed in the following sections in the limits of nar-
row or wide obstacles. Finally, we bridge the gap between
these two limiting cases with a numerical study for a model
obstacle and characterise analytically the perfect trans-
mission lines.

Theoretical model. – We consider a one-dimensional
quantum fluid flowing in the negative-x direction in the
framework of the NLS equation. For the sake of clar-
ity, we employ here the language of weakly interacting
bosonic particles of mass m although the results de-
rived in this paper are of wider interest. A quantum
fluid dictionary is provided in the Supplementary Material
Supplementarymaterial.pdf (SM) for readers interested
in other physical realisations of this model. The dynam-
ics of the considered system is governed by a generalised
nonlinear Schrdinger equation for the order parameter ψ,

i�∂tψ =

[

− �
2

2m
∂xx + U(x) + g(|ψ|2)

]

ψ. (1)

The flow is here constrained by an obstacle described in
eq. (1) by a potential U(x) = U0f(|x|/σ) which attains its
single positive maximum (negative minimum) U0 at x = 0
and which is localised, i.e., which vanishes as |x| ≫ σ,
with σ being its typical range. Throughout this work,
we will exemplify our results with a repulsive (attractive)
square potential U(x) = U0Θ(σ/2 − |x|) but results with
a Gaussian potential are given in the SM. The reason why
we employ such a toy model is because it allows to ob-
tain analytical results without loss of generality. In addi-
tion to the external potential, the fluid is also subjected
to a self-interaction described by the local nonlinear term
g(|ψ|2 = n)ψ, where the potential g(n) is an increasing
function of the density n. We consider two different kinds
of nonlinearities. We mostly used the cubic nonlinearity of
the standard NLS equation, where g(n) = n in appropri-
ately chosen units. This describes accurately dilute ultra-
cold bosonic atoms [15]. We also considered a saturable
nonlinearity of the form g(n) = (1 + ns)

2n/ [ns(n+ ns)]
which describes quantum fluids of light in rescaled units,
where n is related to the light intensity and ns to the
saturation intensity in the nonlinear medium (see SM).
We now look for the existence of out-of-equilibrium

stationary solutions of eq. (1) of the form ψ(x, t) =
exp[−iμt/�]A(x) exp[iϕ(x)], from which the density and
the velocity fields are obtained from n(x) = A(x)2, v(x) =
�ϕ′(x)/m and μ is the chemical potential. This yields the
following equation of motion for these fields:

n(x)v(x) = Φ,

− �
2

2m
A′′(x) +

[

U(x) + g(n) +
mΦ2

2A(x)4

]

A(x) = μA(x).

(2)

The first of eqs. (2) is simply the current conservation
while the second one expresses the space dependence of the
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density and, therefore, the velocity through current con-
servation. These equations have to be complemented with
boundary conditions. As explained in ref. [18], a regime of
stationary flow exists for supersonic velocities, but in this
case the radiation condition [35] requires that the wake is
always located ahead of the obstacle, i.e., upstream, with
no long-range perturbation of the fluid on the downstream
region, where the flow remains unperturbed. The solution
has therefore to tend to a constant solution with density
n∞ and velocity v∞ far away from the obstacle in the
downstream region (in our case x → −∞) with Φ = n∞v∞
and μ = 1

2mv2∞ + g(n∞). For comparison, a stationary
superfluid solution satisfies the same condition in the up-
stream and downstream regions which is way more re-
strictive. Finally, two important scales emerge due to the
nonlinearity g(n), namely the sound velocity c∞ and the
healing length ξ∞. They are defined in the downstream
region as mc2∞ = n∞g′(n∞) = μ∞ and ξ∞ = �/mc∞. In
the rest of the paper we rescale all quantities in terms of
n∞ for densities, c∞ for velocities, ξ∞ for distances, and
mc2∞ for energies. This corresponds to the substitution
� = m = 1 and μ = g(1) + 1

2v
2
∞ in eq. (2).

The main objective is now to search for the condition
of existence for the solutions to eq. (2), which depends
on the value of the injection velocity v∞. The last value
under which there is no longer a solution to eq. (2) defines
the equation of the supersonic separatrix. In the spirit of
ref. [18], eq. (2) can be rephrased in terms of a Hamilton
equation describing the dynamics of a fictitious classical
particle of position A(x) and momentum p = A′(x) at
time x. The corresponding Hamilton function reads [36]

H(A, p) =
p2

2
+W (A2)− U(x)A2 (3)

with W (A2 = n) =
v2

∞

2

(

n+ 1
n

)

+ ng(1) − G(n), and the
antiderivative G(n) =

∫

dn g(n). Equations (2) are then
derived from the canonical Hamilton equations ṗ = −∂AH
and Ȧ = ∂pH, where the dot stands for the total derivative
with respect to the effective time x. In particular, in the
absence of the external potential U(x), this Hamiltonian is
time-independent and the energy Ecl of the classical par-
ticle is conserved. The free solutions of the NLS equation
can then be readily obtained from the possible trajectories
of the classical particle in the potential W (A2 = n). The
typical shape of this potential for g(n) = n is depicted in
fig. 2. For example, the equilibrium point referred to as
n∞ in fig. 2 corresponds to a constant-density supersonic
solution (v∞ > c∞) while small oscillations around this
classical fixed point correspond to the superposition of an
incoming plane wave and a small-amplitude reflected wave
describing weak backscattering. Note that, in general, the
nonlinearity of the NLS equation forbids such a separation
of the upstream solution into a sum of independent incom-
ing and reflected waves. However, if the backscattering is
weak, the interaction between the incoming wave and the
reflected wave is negligible. In general, this separation is

Fig. 2: Schematic behaviour of the fictitious potential W (A2 =
n) for a cubic nonlinearity of the form g(n) = n and v∞ > c∞.
The inset displays the special case v∞ = c∞.

not possible and the free solutions are described by cnoidal
waves [18]. In particular, solutions with Ecl slightly below
Wmax correspond to one or several gray solitons. In the
presence of the scattering potential U(x) the energy of the
classical particle is no longer conserved and its dynamics
may be nontrivial. The boundary condition in the down-
stream region (where U(x) = 0) imposes that the classical
particles starts with A(−∞) = 1 (n∞ in fig. 2) and the
forward integration has to satisfy that the final energy and
the position A of the classical particle remain in the well of
W (n). This is the strategy we use to obtain the equation
of the supersonic separatrix.

In the following we provide explicit analytical results
for the supersonic separatrix in the limiting cases of weak,
narrow and wide obstacles. We then focus on the case of
the attractive obstacle of arbitrary width. Using numeri-
cal solutions, we identify resonant transport and solutions
with perfect transmission similar to the ones of the super-
fluid regime. Our study reveals the existence of resonances
for very specific sets of injection velocity and obstacle pa-
rameters as can be seen in fig. 1, which we characterise
in the context of our simplified model, providing a better
comprehension of the phenomenon.

Weak obstacle. – Before discussing nontrivial situa-
tions, it is instructive to revisit Landau’s criterion, which
in our case reduces to the well-known result vc = c∞, in
terms of the classical mechanics analogy. The fictitious
potential W (n) must be typically of the shape shown in

fig. 2, with lim
n→0

W (n) = +∞ and lim
n→+∞

W (n) = −∞.

W (n) has a local minimum Wmin obtained at n∞ = 1,
and a local maximum Wmax for nmax > 1. In the absence
of any scattering potential, solutions with n = n∞ and
n = nmax correspond respectively to the supersonic and
the subsonic superfluid solution. As v∞ is tuned and ap-
proaches c∞ these two solutions merge and the potential
has a saddle point as shown in the inset of fig. 2. The
two critical velocities vc and vs are therefore identical and
equal to the speed of sound as shown in fig. 1 for U0 → 0.
The presence of a weak obstacle will not modify the struc-
ture of this saddle-node bifurcation but will only be the
trigger of the instability.
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Narrow obstacle. – When the typical range of the
obstacle potential is much smaller than the healing length,
i.e., when σ ≪ 1, it is possible to approximate U(x) by
U(x) = U0F (σ)δ(x), where F (σ) is the integral of f(|x|/σ)
over the whole real axis, and is simply given by F (σ) = σ
in the case of a square obstacle, which could be a well or a
barrier depending on the sign of U0. One can then obtain
an analytical expression for the supersonic separatrix by
searching for the solutions of the Hamilton equations with
energy Ecl,δ = ε(v∞) = 2U2

0F
2(σ) + v2∞ + g(1) − G(1)

associated to a δ-shaped obstacle.
From a classical point of view, the fictitious particle

starts at x = −∞ with density n∞ = 1. It experiences
a kick of energy when meeting the obstacle, going from
Wmin to ε, and will oscillate between the two solutions of
W (n) = ε after this encounter. If Wmin < ε < Wmax,
the particle is trapped and the density oscillates between
the two solutions of W (n) = ε: This is the supersonic
stationary regime. This type of solution is depicted in
panel (c) of fig. 1. However if ε < Wmin or ε > Wmax,
the dynamics is no longer stationary and excitations are
continuously generated as depicted in panel (b) of fig. 1.
The boundary between the nonstationary and the sta-

tionary regimes is by definition the supersonic separa-
trix, and corresponds to the last stationary solution. It
is given by ε(vs) = W (nmax(vs)) with nmax such that
W ′(nmax) = 0. This yields

1√
2

[

v2s
2

(√
nmax −

1√
nmax

)2

+ g(1)(nmax − 1)

+G(1)−G(nmax)

]
1

2

= |U0F (σ)|. (4)

An explicit solution of this equation can be derived for
a cubic nonlinearity of the form g(n) = n [18], while
for a saturable nonlinearity of the form g(n) = (1 +
ns)

2n/ [ns(n+ ns)], characteristic of superfluids of light
in a saturable media [21], it has to be solved numerically
(see SM).
The upper panel of fig. 3 represents the supersonic sep-

aratrix with respect to the effective amplitude U0F (σ) of
the narrow obstacle. The green curve is obtained for a
cubic nonlinearity, whereas the blue solid (dotted) lines
are for a saturable nonlinearity, with saturation inten-
sity ns = 0.1, 10. Although the cubic nonlinearity is a
limiting case of the saturable nonlinearity when ns ≫ n,
large deviations are observable even for ns = 10 which are
of great importance for experiments with fluids of light.
Moreover, it is important to emphasise that in the above-
mentioned saturable systems, the fictitious potentialW (n)
may be such that it has no local maximum depending
on the value of ns. With a saturable nonlinearity, when
v∞ >

√
2 + 2ns, the potential W has only one minimum

and diverges towards +∞ for both n → 0 and n → +∞
(see SM). The fictitious particle is then always trapped in
this potential and all solutions for v∞ >

√
2 + 2ns are

Fig. 3: The top (bottom) figure represents the supersonic sep-
aratrix for a repulsive narrow (wide) obstacle of amplitude
U0F (σ) (U0). The two types of nonlinearity g(n) considered
here are indicated in the legend which applies to both panels.

stationary. This explains the plateau at large U0F (σ)
in the top panel of fig. 3 for the ns = 0.1 case with a
value vs =

√
2.2 ≃ 1.48. It is also interesting to note

that eq. (4) predicts a symmetric supersonic separatrix as
a function of U0. This symmetry between repulsive and
attractive obstacle —not present in the case of the super-
fluid separatrix— is also a peculiarity of the δ-peak model,
and will be broken as σ increases, or in other words when
the velocity of the flow is large enough so that the associ-
ated de Broglie wavelength is small enough to resolve the
details of the potential. This can be seen, for example,
in fig. 1 where the symmetry is clearly broken and reso-
nances appear in the attractive case for a square potential
of width σ = 1 and a cubic nonlinearity.

Wide repulsive obstacle. – We now consider the ob-
stacle dependence of the separatrix in the case of a wide
obstacle σ ≫ 1. In that case, the fictitious particle follows
adiabatically the slow variations of the effective potential
W (n) − U(x)n and remains at its minimum as far as it
exists. The situation is then similar to the one of a weak
obstacle. The fluid flow is locally uniform but dressed
by the obstacle according to eq. (2) with A′′ = 0. It
is now a matter of applying the criterion for the saddle-
node bifurcation locally, namely looking for points where
the local velocity is equal to the local speed of sound
c(x) = n(x)g′(n(x)). This will first appear at the max-
imum of the scattering potential at x = 0. Using current
conservation we obtain the implicit formula

g′(n0,c)n
3
0,c = v2s , (5)
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where n0,c is the density at x = 0 at the transition
point and can be computed from the saddle point equa-
tion W ′(n0,c) − U0 = 0. Equation (5) is equivalent to
W ′′(n0,c) = 0 which is the second saddle point equation.
It is important to note that this equation is the same for
the supersonic and the subsonic separatrix but has two so-
lutions respectively larger and smaller than c∞. As for the
narrow barrier, this supersonic separatrix is represented in
the bottom part of fig. 3 for an obstacle of typically large
σ, and for the same kinds of nonlinearities. As a matter
of fact, the effect of saturation of the nonlinearity is less
pronounced for large obstacles than for narrow ones. Note
that we do not display the attractive part since eq. (5) pre-
dicts that the critical velocity is always the sound velocity
at this level of approximation.

Attractive obstacle of arbitrary width. – In the
general case, the precise shape of the obstacle has an im-
portant influence as we will discuss in this section. In
general, eq. (2) has to be solved numerically to obtain the
equation of the separatrix, except for specific models such
as piecewise constant obstacles [18]. However, as far as
localised obstacles of the form discussed in this work are
considered, the generic picture displayed in fig. 1 is valid.
In particular, nonlinear resonances may exist and lead to
a nontrivial structure of the stability diagram. In ref. [29]
such resonances were considered in the case of a repul-
sive square well obstacle due to the Ramsauer-Townsend
effect in arbitrary dimension. These solutions were put
forward to be of great interest since they share an impor-
tant property with superfluid solutions, and they do not
experience friction with the obstacle although they are su-
personic (see SM for a detailed analysis). However, they
exist on specific curves (represented by the orange dot-
ted curves in fig. 4) in the stability diagram and do not
form a continuous family of solutions like the subsonic su-
perfluid solutions. We then cannot find a real superfluid
regime above the supersonic separatrix as these lines form
a null measure set. In the following, we discuss in detail
the case of an attractive potential and give explicit re-
sults for a square well potential. Results with a Gaussian
potential are available in the SM. In particular we demon-
strate that the lobe structure in the stability diagram of
fig. 1 is indeed related to these resonances which contin-
uously connect the superfluid solutions to superfluid-like
solutions above the critical velocity along one-dimensional
lines in parameter space (U0, v∞).

From now on, we focus on the attractive case and exem-
plify our findings with a square well potential of amplitude
U0 and width σ, and complement the stability diagram
with the knowledge of the transmission coefficient in the
(U0, v∞)-plane. While in the linear case (i.e., g(n) = 0
in eq. (1)) the reflection and transmission coefficients, as
well as the position of the resonances, are well known [37],
they cannot be defined easily in the nonlinear case as pre-
viously discussed. Nevertheless it is possible to give a
proper definition of scattering amplitudes using the theory

Fig. 4: Phase diagram (U0, v∞) (in the natural units of the
superfluid) of a quantum fluid flowing across attractive square
well potentials of respective width of σ = 1 (top) and σ = 4
(bottom), and for a cubic nonlinearity of the form g(n) = n.
The transmission across the barrier is associated with the
colour bar and is maximum along the orange dotted curves
which determine the position of the resonances, whereas
the white dashed line represents the envelope of the said
resonances.

of adiabatic invariants [36,38] or a simpler but perturba-
tive one in the weak backscattering limit [36,39]. As we are
mostly interested in the position of the resonances, we will
employ the latter definition which has been shown to pro-
duce results in good agreement with the exact adiabatic
invariants approach [36] even far away from resonances.
The transmission coefficient reads

T =

(

1 +
∆E

2(v2∞ − 1)

)−1

. (6)

∆E is the energy difference of the fictitious parti-
cle between its final (x = +∞) and initial (x =
−∞) states: ∆E = H [A(x = +∞), p(x = +∞)] −
H [A(x = −∞), p(x = −∞)]. For x = −∞, the fictitious
particle is at equilibrium with A = 1 and p = 0.
Numerical results are summarised in fig. 4. The colour

scale shows the transmission coefficient of the fluid across
the obstacle as a function of the injection velocity of the
fluid and of the amplitude of the square well obstacle,
for a given value of σ. The coloured zone is separated
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Fig. 5: Classical potentials seen by the fictitious particle in the
case of an attractive square well obstacle. The lower curve is
the potential W (n) for x < −σ/2 and x > σ/2, while W0(n) is
the one for x ∈ [−σ/2, σ/2].

from white zones of undefined transmission (correspond-
ing to the nonstationary regime) by the supersonic sep-
aratrix, clearly exhibiting resonances. In particular, the
perfect transmission lines are shown to follow exactly the
nontrivial structure of the stability diagram and are drawn
as orange dotted curves, while the white dashed curve rep-
resents the envelope of the resonances. Both curves can
be calculated analytically for a square well potential as
suggested in [18] and explained below. In the following we
provide explicit results for g(n) = n. Again, thinking in
terms of a fictitious particle moving in a classical poten-
tial provides a simple picture of the underlying physics,
and the mechanism behind the existence of resonances is
illustrated in fig. 5.
We start by discussing the stability diagram. Before

the excitation caused by the rectangular obstacle, the fic-
titious particle is at rest from x = −∞ to x = −σ/2 with
density n∞ and energy E∞ = W (n∞) in the potential W .
As it reaches the obstacle, it undergoes a kick of energy
∆E = E0 −E∞, going from (n∞, E∞) to (n∞, E0) in the
new potential W0 = W + U0n. The particle then oscil-
lates in W0 between n∞ and n− as it progresses in the
obstacle, and returns to the potential W with density ñ
for x = +σ/2. Several cases leading to different dynamics
for the fluid are then possible depending on the values of
U0, v∞ and σ. In that context, we define L̃ the distance
between n∞ and ñ performed in W0, and L0 the distance
of the round-trip between n∞ and n−, i.e., the period of
the oscillations of the fictitious particle in W0,

L̃ =
1√
2

∫

√
n∞

√
ñ

dA
√

E0 −W0(A)
, (7a)

L0 =
√
2

∫

√
n∞

√
n−

dA
√

E0 −W0(A)
. (7b)

For stationary solutions to exist it is necessary that the
energy of the fictitious particle when it exits the obstacle
is lower than the maximum of W (n) (the configuration of
fig. 5). In this way, the particle is always confined. The en-
velope of the resonances (white dashed line in fig. 4), above

which stationary solutions exist no matter the value of σ,
is obtained when the energy of the fictitious particle at the
end of the obstacle corresponds exactly to the maximum
of the fictitious potential. An analytical expression can
be obtained for that envelope, separating the case where
solutions always exist from the one where the existence of
the said solutions depends on the value of σ, and can be
found in eqs. (34) and (35) of [18]. It is interesting to note
that, for a square well obstacle, U0 and σ are uncorrelated
quantities, and the amplitude of the resonances will not
depend on σ, as shown by the white dashed line in fig. 4.
For such an obstacle, the resonances will never disappear
and their envelope will always be the same for any value
of σ. Interestingly, numerical simulations showed that this
is not the case for a Gaussian potential: The envelope of
the resonances does depend on σ, and decreases as the
width increases. These results are presented in the SM.
One can also see in fig. 4 that the resonances multiply as
σ increases. At some point, for an arbitrarily large value
of σ, the resonances are so thin and numerous that they
are not distinguishable from one another anymore, to the
extent that the supersonic separatrix would be given by
vs = 1 in the limit σ ≫ 1. Since the subsonic separatrix
is also given by vc = 1, the gap opened by the nonsta-
tionary regime slowly closes as the width of the obstacle
increases.

Concerning the position of the resonances, the connec-
tion of the subsonic superfluid solution to curves of per-
fect transmission in the supersonic regime is performed at
v∞ = c∞. From our classical analysis, the two extrema
of the potential W (n) merge in a unique saddle point lo-
cated at n = n∞. Oscillations are not possible anymore,
and the only way for a stationary state to exist is when the
excited fictitious particle exits W0 with the same density
it had when entering it, meaning L̃ = 0. More generally,
when the fictitious particle performs an arbitrary num-
ber of round-trips in the excited potential W0, so that
its energy after exiting the obstacle is exactly the one it
had before the excitation, a resonance forms between the
width of the obstacle and the wavelength of the cnoidal
wave of the oscillating particle, causing a perfect transmis-
sion, and linking the superfluid regime to the stationary
nonsuperfluid one. The equation of these lines of perfect
transmission (see the orange dotted curves in fig. 4) is
then given by αL0 = σ, α being an integer, with L0 given
by eq. (7). Along these lines, the superfluid/stationary
nonsuperfluid transition is continuous and the system is
always stationary. Note that we have numerically checked
the stability of this solution by doing time-dependent sim-
ulation of the NLS eq. (1). This was done in the spirit of
ref. [29] where the obstacle was ramped adiabatically in
strength and velocity.

Conclusion. – In this paper we have studied the su-
personic separatrix between the nonstationary and the
normal stationary regime of a generic quantum fluid flow-
ing past a localised obstacle of arbitrary amplitude and
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width, in the 1D mean-field regime. We have computed
this critical velocity by deriving nonperturbative exact ex-
pressions in the limits of narrow and wide obstacle, and
studying more thoroughly the peculiar case of the arbi-
trary attractive obstacle, which exhibits a nontrivial be-
haviour. For most parameters, a standing wave forms
ahead of the obstacle, with a constant friction force and
a partially transmitted wave. However we have shown
that, along certain curves, due to resonant transport, su-
personic solutions may share fundamental properties with
their subsonic superfluid counterpart: They are symmet-
ric solutions and, therefore, the quantum fluid is totally
transmitted through the obstacle, without any friction.
All together, these results are important for the exper-

imental studies of transport properties of quantum fluids
described by a generalised NLS equation. They provide
a clear map in parameter space of the different possible
stationary regimes of flow for a quantum fluid, in order
to guide experimental studies in the desired regime of
nonlinear transport.
Finally, an extension of this work to higher dimensions

would be desirable, notably in 2D, as experimental data
are available for a saturable nonlinearity [21].
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